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Cooperative Solutions in Multi-Person Quadratic Decision Problems:
Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

Khanh D. Pham
Space Vehicles Directorate

Air Force Research Laboratory
Kirtland AFB, NM 87117 U.S.A.

Abstract— In the cooperative cost-cumulant control regime
for the class of multi-person single-objective decision problems
characterized by quadratic random costs and state-feedback
information structures, individual decision makers share state
information with their neighbors and then autonomously deter-
mine decision strategies to achieve the desired goal of the group
which is a minimization of a finite linear combination of the
first k cost cumulants of a finite-horizon integral quadratic cost
associated with a linear stochastic system. Since this problem
formulation is parameterized by the number of cost cumulants,
the scalar coefficients in the linear combination and the group
of decision makers, it may be viewed both as a generalization of
linear-quadratic Gaussian control, when the first cost cumulant
is minimized by a single decision maker and of the problem class
of linear-quadratic identical-goal stochastic games when the
first cost cumulant is minimized by multiple decision makers.
Using a more direct dynamic programming approach to the
resultant cost-cumulant initial-cost problem, it is shown that
the decision laws associated with multiple persons are linear
and are found as the unique solutions of the set of coupled dif-
ferential matrix Riccati equations, whose solvability guarantees
the existence of the closed-loop feedback decision laws for the
corresponding multi-person single-objective decision problem.

I. INTRODUCTION

Cooperative control involves the control of a group of
entities that are working collectively and efficiently to solve
a problem or meet a common objective. This is an emerging
area of research with widespread applications to problems in
several engineering disciplines and economic analysis. Now,
within the context of performance analysis of cooperative
systems, decision laws of cooperative decision makers are
adjusted repeatedly until a desired response is reached. It is
not at all clear how each decision laws of these decision
makers affect the global closed-loop response of a total
system. There have been a number of attempts to evaluate
the performance of a stochastic system using the average
and variance of the associated performance measure. In case
the performance measure is normally distributed, these two
stochastic moments are sufficient for a full characterization
of the probability distribution. However, this is not always
the case. It turns out that in order to generalize the results for
second-order statistics to higher-order statistics, it is better to
consider higher-order cumulants, not higher-order moments.
One of main results of the paper shows that the higher-order
cumulants of finite-horizon integral quadratic form cost can
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be obtained directly from the cumulant-generation equation.
The result relies heavily on the space-space representation
of the class of linear-quadratic decision problems. The other
important result consists of optimal decision laws associated
with a group of decision makers which simultaneously affect
the performance of the cooperative system via a complete
statistical description. The paper is structured as follows. The
next section prepares the necessary background in generating
higher-order statistics which are then used to formulate the
cost-cumulant control problem for multiple decision makers.
A precise mathematical formulation involving problem state-
ments of the multi-person single-objective decision problem
is given next. Finally, the optimal decision laws are presented
in the last section with concluding remarks.

II. PERFORMANCE-MEASURE STATISTICS

Let’s consider a stochastic decision problem with N co-
operative decision makers, identified as u1, . . . , uN . Suppose
(t0, x0) ∈ [t0, tf ] × Rn is fixed. An input noise w(t) ,
w(t, ω) : [t0, tf ] × Ω 7→ Rp is an p-dimensional stationary
Wiener process defined with {Ft}t≥0 being its filtration on
a complete filtered probability space (Ω,F , {F}t≥0,P) over
[t0, tf ] with the correlation of increments

E
{
[w(τ)− w(ξ)][w(τ)− w(ξ)]T

}
= W |τ − ξ|, W > 0.

Furthermore, decision sets Ui ∈ L2
Ft

(Ω; C([t0, tf ];Rmi)) and
i = 1, . . . , N are assumed to be the subsets of Hilbert space
of Rmi -valued square integrable processes on [t0, tf ] that are
adapted to the σ-field Ft generated by w(t), respectively.
Associated with each (u1, . . . , uN ) ∈ U1 × · · · × UN is a
common finite-horizon integral quadratic form (IQF) payoff
functional J : [t0, tf ]×Rn×U1×· · ·×UN 7→ R+ such that

J(t0, x0; u1, . . . , uN ) = xT (tf )Qfx(tf )

+
∫ tf

t0

[
xT(τ)Q(τ)x(τ) +

N∑

i=1

uT
i (τ)Ri(τ)ui(τ)

]
dτ (1)

where the states of the decision problem, x(t) =
x(t, ω) : [t0, tf ] × Ω 7→ Rn belong to the Hilbert space
L2
Ft

(Ω; C([t0, tf ];Rn)) with E
{∫ tf

t0
xT (τ)x(τ)dτ

}
< ∞

and evolve according to the stochastic differential

dx(t) =

[
A(t)x(t) +

N∑

i=1

Bi(t)ui(t)

]
dt + G(t)dw(t) ,

x(t0) = x0 (2)



in which A ∈ C([t0, tf ];Rn×n), Bi ∈ C([t0, tf ];Rn×mi),
and G ∈ C([t0, tf ];Rn×p) are deterministic matrix-valued
functions together with (A, Bi) uniformly stabilizable. The
terminal Qf ∈ Rn×n, the state Q ∈ C([t0, tf ];Rn×n),
and the control Ri ∈ C([t0, tf ];Rmi×mi) weightings are
deterministic and positive semidefinite with Ri(t) invertible.

In view of the linear system (2) and the quadratic
performance-measure (1), it is reasonable to assume that
cooperative decision makers choose their decision laws from
a class of memoryless perfect-state strategies, as functions of
both time and states, γi : [t0, tf ]×L2

Ft
(Ω; C([t0, tf ];Rn)) 7→

L2
Ft

(Ω; C([t0, tf ];Rmi))

ui(t) = γi(t, x(t)) , Ki(t)x(t) , (3)

where the admissible gains Ki ∈ C([t0, tf ];Rmi×n) are
defined in appropriate senses. For a given initial condition
(t0, x0) ∈ [t0, tf ] × Rn and subject to these strategies (3),
the dynamics of the cooperative decision problem (2) is then
given by

dx(t) =

[
A(t) +

N∑

i=1

Bi(t)Ki(t)

]
x(t)dt + G(t)dw(t) ,

x(t0) = x0 , (4)

and its IQF cost also follows

J(t0, x0; K1, . . . ,KN ) = xT (tf )Qfx(tf )

+
∫ tf

t0

xT(τ)

[
Q(τ) +

N∑

i=1

KT
i (τ)Ri(τ)Ki(τ)

]
x(τ)dτ. (5)

It is now necessary to develop a procedure for generating
cost cumulants for the multi-person single-objective decision
problem by adapting the parametric method in [3] to charac-
terize a moment-generating function. These cost cumulants
are then used to form the performance index in the cost-
cumulant control optimization. This approach begins with a
replacement of the initial condition (t0, x0) by any arbitrary
pair (α, xα). Thus, for the given admissible feedback gains
K1, . . . , KN , the cost functional (5) is seen as the “cost-
to-go”, J (α, xα). The moment-generating function of the
vector-valued random process (4) is given by

ϕ (α, xα; θ) , {exp (θJ (α, xα))} , (6)

where the scalar θ ∈ R+ is a small parameter. Thus, the
cumulant-generating function immediately follows

ψ (α, xα; θ) , ln {ϕ (α, xα; θ)} , (7)

in which ln{·} denotes the natural logarithmic transformation
of an enclosed entity.

Theorem 1: Cost-Cumulant Generating Function.
For all α ∈ [t0, tf ] and the small parameter θ ∈ R+, define

ϕ (α, xα; θ) , % (α, θ) exp
(
xT

αΥ(α, θ)xα

)
, (8)

υ (α, θ) , ln{% (α, θ)} . (9)

Then the cost-cumulant generating function is expressed as

ψ (α, xα; θ) = xT
αΥ(α, θ)xα + υ (α, θ) , (10)

where the scalar solution υ (α, θ) with υ (tf , θ) = 0 solves
d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α)WGT (α)

}
, (11)

and the matrix-valued solution Υ(α, θ) with Υ(tf , θ) = θQf

satisfies

d

dα
Υ(α, θ) = −

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]T

Υ(α, θ)

−Υ(α, θ)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]

− 2Υ(α, θ)G(α)WGT (α)Υ(α, θ)

− θ

[
Q(α) +

N∑

i=1

KT
i (α)Ri(α)Ki(α)

]
. (12)

In addition, the auxiliary solution %(α, θ) is satisfying the
backward-in-time differential equation with % (tf , θ) = 1

d

dα
% (α, θ) = −% (α, θ)Tr

{
Υ(α, θ)G (α)WGT (α)

}
. (13)

Proof. For any θ given, let $ (α, xα; θ) , exp (θJ (α, xα))
then the moment-generating function becomes
ϕ (α, xα; θ) = E {$ (α, xα; θ)} with the time derivative of

d

dα
ϕ (α, xα; θ) =

−ϕ (α, xα; θ) θxT
α

[
Q(α) +

N∑

i=1

KT
i (α)Ri(α)Ki(α)

]
xα .

Using the standard Ito’s formula, one gets

dϕ (α, xα; θ) = E {d$ (α, xα; θ)} ,

= E
{

$α (α, xα; θ) dα + $xα (α, xα; θ) dxα

+
1
2

Tr
{
$xαxα(α, xα; θ)G(α)WGT (α)

}
dα

}
,

= ϕα (α, xα; θ) dα

+ ϕxα (α, xα; θ)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]
xαdα

+
1
2

Tr
{
ϕxαxα (α, xα; θ)G (α) WGT (α)

}
dα ,

which with the definition (8) leads to

−ϕ (α, xα; θ) θxT
α

[
Q(α) +

N∑

i=1

KT
i (α)Ri(α)Ki(α)

]
xα

=
d

dα% (α, θ)
% (α, θ)

ϕ (α, xa; θ) + ϕ (α, xα; θ) xT
α

d

dα
Υ(α, θ)xα

+ ϕ (α, xα; θ)

{
xT

α

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]T

Υ(α, θ)xα

+ xT
αΥa(α, θ)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]
xα

}

+ ϕ (α, xα; θ)
{

2xT
αΥ(α, θ)G(α)WGT (α)Υ(α, θ)xα

+ Tr
{
Υ(α, θ)G(α)WGT (α)

} }
.



To have constant and quadratic terms being independent of
xα, it requires that

d

dα
Υ(α, θ) = −

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]T

Υ(α, θ)

−Υ(α, θ)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]

− 2Υ(α, θ)G (α)WGT (α)Υ(α, θ)

− θ

[
Q(α) +

N∑

i=1

KT
i (α)Ri(α)Ki(α)

]
,

d

dα
% (α, θ) = −% (α, θ) Tr

{
Υ(α, θ)G (α)WGT (α)

}
,

where the terminal conditions Υ(tf , θ) = θQf and
% (tf , θ) = 1. Finally, the remaining backward-in-time dif-
ferential equation satisfied by υ (α, θ) is given by

d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α)WGT (α)

}
, υ (tf , θ) = 0

which completes the proof.
Now it is ready to generate cost cumulants for the multi-

person decision-making problem by looking at a MacLaurin
series expansion of the cumulant-generating function

ψ (α, xα; θ) =
∞∑

j=1

κj(α, xα)
θj

j!

=
∞∑

j=1

∂(j)

∂θ(j)
ψ(α, xα; θ)

∣∣∣∣
θ=0

θj

j!
(14)

in which κj(α, xα)’s are called the cost cumulants. Notice
that the series coefficients can be computed by using (10)

∂(j)

∂θ(j)
ψ(α, xα; θ)

∣∣∣∣
θ=0

=

xT
α

∂(j)

∂θ(j)
Υ(α, θ)

∣∣∣∣
θ=0

xα +
∂(j)

∂θ(j)
υ(α, θ)

∣∣∣∣
θ=0

. (15)

In view of the results (14) and (15), cost cumulants for the
stochastic decision problem can be obtained as

κj(α, xα) = xT
α

∂(j)

∂θ(j)
Υ(α, θ)

∣∣∣∣
θ=0

xα+
∂(j)

∂θ(j)
υ(α, θ)

∣∣∣∣
θ=0

(16)

for any finite 1 ≤ j < ∞. For notational convenience, the
following definitions are needed in place

H(α, j), ∂(j)

∂θ(j)
Υ(α, θ)

∣∣∣∣
θ=0

; D(α, j), ∂(j)

∂θ(j)
υ(α, θ)

∣∣∣∣
θ=0

(17)

Theorem 2: Cost Cumulants in Decision Problems.
Let decision makers choose their control strategies
(u1(t), . . . , uN (t)) = (K1(t)x(t), . . . ,KN (t)x(t)), where
the dynamics of the multi-person single-objective decision
system is governed by the linear stochastic differential equa-
tion (4) and is associated with finite-horizon IQF payoff
functional (5). For k ∈ Z+ fixed and 1 ≤ r ≤ k, the kth-cost

cumulant in the multi-person decision-making problem can
be shown of the form

κk(t0, x0; K1, . . . ,KN ) = xT
0 H(t0, k)x0 + D(t0, k) , (18)

in which the cumulant-building variables {H(α, r)}k
r=1 and

{D(α, r)}k
r=1 evaluated at α = t0 satisfy the following

differential equations (with the dependence of H(α, r) and
D(α, r) upon the admissible gains K1, . . . , KN suppressed)

d

dα
H(α, 1) = −

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]T

H(α, 1)

−H(α, 1)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]

−Q(α)−
N∑

i=1

KT
i (α)Ri(α)Ki(α) , (19)

and, for 2 ≤ r ≤ k

d

dα
H(α, r) = −

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]T

H(α, r)

−H(α, r)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]

−
r−1∑
s=1

2r!
s!(r − s)!

H(α, s)G(α)WGT (α)H(α, r − s) , (20)

together with 1 ≤ r ≤ k

d

dα
D(α, r) = −Tr

{
H(α, r)G(α)WGT (α)

}
, (21)

where the terminal conditions H(tf , 1) = Qf , H(tf , r) = 0
for 2 ≤ r ≤ k and D(tf , r) = 0 for 1 ≤ r ≤ k.
Proof. The cost cumulant expression in (18) is readily
justified by using the result (16) and the definitions (17).
What remains to show that the solutions H(α, r) and D(α, r)
for 1 ≤ r ≤ k indeed satisfy the equations (19)-(21). Note
that the equations (19)-(21) are satisfied by the solutions
H(α, r) and D(α, r) can be obtained by repeatedly taking
the derivative with respect to θ of the equations (11)-(12)
together with the assumption A(α) +

∑N
i=1 Bi(α)Ki(α),

stable for all α ∈ [t0, tf ].

III. PROBLEM STATEMENTS

In the subsequent development, the subset of symmetric
matrices of the vector space of all n × n matrices with
real elements is denoted by Sn. Now let k-tuple variables
H and D be defined as follows H(·) , (H1(·), . . . ,Hk(·))
and D(·) , (D1(·), . . . ,Dk(·)) where each element Hr ∈
C1([t0, tf ];Sn) of H and Dr ∈ C1([t0, tf ];R) of D have the
representations Hr(·) = H(·, r) and Dr(·) = D(·, r) with
the right members satisfying the dynamic equations (19)-
(21) on the horizon [t0, tf ]. For notational simplicity, the
following convenient mappings become necessary

Fr : [t0, tf ]× (Sn)k × Rm1×n × · · · × RmN×n 7→ Sn

Gr : [t0, tf ]× (Sn)k 7→ R



with the actions given by

F1(α,H,K1, . . . , K2) ,

−
[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]T

H1(α)

−H1(α)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]

−Q(α)−
N∑

i=1

KT
i (α)Ri(α)Ki(α),

and, for 2 ≤ r ≤ k

Fr(α,H,K1, . . . , KN ) ,

−
[
A(α) +

∑

i=1

Bi(α)Ki(α)

]T

Hr(α)

−Hr(α)

[
A(α) +

N∑

i=1

Bi(α)Ki(α)

]

−
r−1∑
s=1

2r!
s!(r − s)!

Hs(α)G(α)WGT (α)Hr−s(α),

finally, for 1 ≤ r ≤ k

Gr(α,H) , −Tr
{Hr(α)G(α)WGT (α)

}
.

For a compact formulation, the product mappings should be
established such that F1 × · · · × Fk : [t0, tf ] × (Sn)k ×
Rm1×n×· · ·×RmN×n 7→ (Sn)k and G1×· · ·×Gk : [t0, tf ]×
(Sn)k 7→ Rk along with the corresponding notations F =
F1 × · · · × Fk and G = G1 × · · · × Gk. Thus, the dynamic
equations of motion (19)-(21) can be rewritten as follows

d

dα
H(α) = F(α,H(α),K1(α), . . . , KN (α)) , (22)

d

dα
D(α) = G(α,H(α)) , (23)

where the terminal values H(tf ) , Hf = (Qf , 0, . . . , 0) and
D(tf ) , Df = (0, . . . , 0).

Note that the product system uniquely determines H and
D once the admissible feedback gains K1, . . . , KN are spec-
ified. Hence, H and D are considered as H(·, K1, . . . , KN )
and D(·,K1, . . . ,KN ), respectively. The performance index
in the cost-cumulant control problem can now be formulated
in the admissible feedback gains K1, . . . , KN .

Definition 1: Performance Index.
Fix k ∈ Z+ and the sequence µ = {µl ≥ 0}k

l=1 with µ1 > 0.
Then for the given initial condition (t0, x0), the performance
index φ0 : [t0, tf ]× (Sn)k ×Rk 7→ R+ of the cost-cumulant
control is defined as

φ0 (t0,H(t0,K1, . . . , KN ),D(t0,K1, . . . , KN )) ,
k∑

l=1

µlκl(K1, . . . , KN ) =
k∑

l=1

µl

[
xT

0Hl(t0,K1, . . . , KN )x0

+Dl(t0, K1, . . . , KN )
]
, (24)

where real constants µl mutually chosen by cooperative
decision makers represent different levels of influence as
they deem important to the overall cost distribution and
symmetric solutions {Hl(t0, K1, . . . , KN ) ≥ 0}k

l=1 and
{Dl(t0,K1, . . . ,KN ) ≥ 0}k

l=1 evaluated at α = t0 satisfy
the equations (22)-(23).
For the given terminal data (tf ,Hf ,Df ), the classes
K1

tf ,Hf ,Df ;µ, . . . ,KN
tf ,Hf ,Df ;µ of admissible feedback gains

may be defined as follows.
Definition 2: Admissible Feedback Decision Strategies.

Let the compact subsets K1 ⊂ Rm1×n, . . . , KN ⊂
RmN×n be the sets of allowable gain values. For the
given k ∈ Z+ and the sequence µ = {µl ≥ 0}k

l=1

with µ1 > 0, the sets of admissible decision strategies
K1

tf ,Hf ,Df ;µ, . . . ,KN
tf ,Hf ,Df ;µ are assumed to be the classes

of C([t0, tf ];Rm1×n), . . . , C([t0, tf ];RmN×n) with values
K1(·) ∈ K1, . . . ,KN (·) ∈ KN for which solutions to the
dynamic equations of motion (22)-(23) exist on the finite
horizon [t0, tf ].

Definition 3: Optimization Problem.
Suppose that k ∈ Z+ and the sequence µ = {µl ≥
0}k

l=1 with µ1 > 0 are fixed. Then the cost-cumulant
control optimization problem over [t0, tf ] is given by the
minimization of the performance index (24) for all K1(·) ∈
K1

tf ,Hf ,Df ;µ, . . . , KN (·) ∈ KN
tf ,Hf ,Df ;µ and subject to the

dynamic equations (22)-(23) for α ∈ [t0, tf ].
Let’s now introduce the value function, V(ε,Y,Z) for the
decision problem starting at the time-states triple (ε,Y,Z).

Definition 4: Value Function.
The value function V : [t0, tf ]× (Sn)k×Rk 7→ R+∪{+∞}
associated with the Mayer problem is defined by

V(ε,Y,Z) , min
K1(·)∈K1

ε,Y,Z;µ,...,KN (·)∈K2
ε,Y,Z;µ

φ0(·, ·, ·) ,

for any (ε,Y,Z) ∈ [t0, tf ]× (Sn)k × Rk.
Conventionally, set V(ε,Y,Z) = ∞ when any of
K1

ε,Y,Z;µ, . . . ,KN
ε,Y,Z;µ is empty. The development in the

sequel is motivated by the excellent treatment in [2], and
is intended to follow it closely. Unless otherwise specified,
the dependence of trajectory solutions H and D on the
admissible gains K1, . . . ,KN is now omitted for notational
clarity.

Theorem 3: Property 1: Necessary Condition.
The value function evaluated along any trajectory corre-
sponding to a pair of control strategy gains feasible for its
terminal states is a non-increasing function of time.

Theorem 4: Property 2: Necessary Condition.
The value function evaluated along any optimal trajectory is
constant.
It is important to note that these properties are necessary
conditions for optimality. The next theorem shows that these
conditions are also sufficient for optimality.

Theorem 5: Sufficient Condition.
Let W(ε,Y,Z) be an extended real-valued function defined
on [t0, tf ]×(Sn)k×Rk such that W(ε,Y,Z) = φ0

(
ε,Y,Z)

.
Let tf , Hf , Df be given terminal conditions and let, for

each trajectory pair (H,D) corresponding to the decision



strategies (K1, . . . , KN ) in K1
tf ,Hf ,Df ;µ×· · ·×KN

tf ,Hf ,Df ;µ,
W(α,H(α),D(α)) be finite and non-increasing on [t0, tf ].

If (K∗
1 , . . . ,K∗

N ) are decision strategies in K1
tf ,Hf ,Df ;µ×

· · · × KN
tf ,Hf ,Df ;µ such that for the corresponding trajec-

tory pair (H∗,D∗), W(α,H∗(α),D∗(α)) is constant then
(K∗

1 , . . . , K∗
N ) are optimal strategies and W(tf ,Hf ,Df ) =

V(tf ,Hf ,Df ).
Corollary 1: Restriction of Decision Strategies.

Let (K∗
1 , . . . , K∗

N ) be optimal decision strategies in
K1

tf ,Hf ,Df ;µ × · · · × KN
tf ,Hf ,Df ;µ and (H∗,D∗) the corre-

sponding trajectory pair of dynamic equations

d

dα
H(α) = F(α,H(α),K1(α), . . . , KN (α)) , H(tf )

d

dα
D(α) = G(α,H(α)) , D(tf ) .

Then the restriction of (K∗
1 , . . . ,K∗

N ) to [t0, α] are optimal
decision strategies for each control problem with terminal
conditions (α,H∗(α),D∗(α)) when t0 ≤ α ≤ tf .
Remarks. Both necessary and sufficient conditions implied
by these properties for a control gain to be optimal give
hints that one may find a function W(ε,Y,Z) : [t0, tf ] ×
(Sn)k × Rk 7→ R+ such that W(ε,Y,Z) = φ0

(
ε,Y,Z)

,
W(ε,Y,Z) is constant on the corresponding trajectory pair,
and W(ε,Y,Z) is non-increasing on other trajectories.

Note that the value function V(ε,Y,Z) is supposed to be
continuously differentiable in (ε,Y,Z). Formally speaking,
the result regarding the differentiability of the value function
adapted from [2] is stated as follows.

Theorem 6: Differentiability of Value Function.
Let K∗

1 (α,H,D), K∗
2 (α,H,D) , . . . , K∗

N (α,H,D),
t0(ε,Y,Z), and (H(t0(ε,Y,Z); ε,Y),D(t0(ε,Y,Z); ε,Z))
be optimal decision laws, an initial time and initial states
for the trajectories of

d

dα
H(α) = F(α,H,K∗

1 (α,H,D), . . . , K∗
N (α,H,D)) ,

d

dα
D(α) = G(α,H) ,

with the terminal condition (ε,Y,Z). Then, the value
function V(ε,Y,Z) is differentiable at each point
at which t0(ε,Y,Z) and H(t0(ε,Y,Z); ε,Y) and
D(t0(ε,Y,Z); ε,Z) are differentiable with respect to
(ε,Y,Z).

Definition 5: Playable Set.
Let the playable set Q be defined as follows

Q ,
{

(ε,Y,Z) ∈ [t0, tf ]× (Sn)k × Rk

such thatK1
ε,Y,Z;µ × · · · × KN

ε,Y,Z;µ 6= 0
}

.

Theorem 7: HJB Equation-Mayer Problem.
Let (ε,Y,Z) be any interior point of the playable set Q at
which the value function V(ε,Y,Z) is differentiable. Then

V(ε,Y,Z) satisfies the partial differential inequality

0 ≥ ∂

∂ε
V(ε,Y,Z)

+
∂

∂ vec(Y)
V(ε,Y,Z) · vec(F(ε,Y,K1, . . . , KN ))

+
∂

∂ vec(Z)
V(ε,Y,Z) · vec(G(ε,Y)) ,

for all (K1, . . . , KN ) ∈ K1 × · · · ×KN .
If there exist optimal decision strategies (K∗

1 , . . . , K∗
N ) ∈

K1
ε,Y,Z;µ× · · ·×KN

ε,Y,Z;µ, then the partial differential equa-
tion of decision problems

0 = min
K1∈K1,...,KN∈KN

{
∂

∂ε
V(ε,Y,Z)

+
∂

∂ vec(Y)
V(ε,Y,Z) · vec(F(ε,Y,K1, . . . , KN ))

+
∂

∂ vec(Z)
V(ε,Y,Z) · vec(G(ε,Y))

}
(25)

is satisfied together with V(t0,H0,D0) = φ0(t0,H0,D0)
and vec(·) the vectorizing operator of enclosed enti-
ties. The optimum in (25) is achieved by the left limit
(K∗

1 (ε)−, . . . , K∗
N (ε)−) of the optimal strategies at ε.

Theorem 8: Verification Theorem.
Fix k ∈ Z+. Let W(ε,Y,Z) be a continuously differentiable
solution of the HJB equation

0 = min
K1∈K1,...,KN∈KN

{
∂

∂ε
V(ε,Y,Z)

+
∂

∂ vec(Y)
V(ε,Y,Z) · vec(F(ε,Y,K1, . . . , KN ))

+
∂

∂ vec(Z)
V(ε,Y,Z) · vec(G(ε,Y))

}

and satisfy the boundary condition for all (t0,H0,D0) ∈M

W(t0,H0,D0) = φ0 (t0,H0,D0) , (26)

where M , {t0} × (Sn)k × Rk.
Let (tf ,Hf ,Df ) be a point of Q, (K1, . . . , KN ) control

strategies in K1
tf ,Hf ,Df ;µ × · · · × KN

tf ,Hf ,Df ;µ and H and D
the corresponding solutions of the equations

d

dα
H(α) = F(α,H(α),K1(α), . . . , KN (α)) , H(tf )

d

dα
D(α) = G(α,H(α)) , D(tf ) .

Then W(α,H(α),D(α)) is a non-increasing function of α.
If (K∗

1 , . . . ,K∗
N ) are control strategies in K1

tf ,Hf ,Df ;µ×· · ·×
KN

tf ,Hf ,Df ;µ defined on [t0, tf ] with corresponding solution,



H∗ and D∗ of the above equations such that for α ∈ [t0, tf ]

0 =
∂

∂ε
W(α,H∗(α),D∗(α))

+
∂

∂ vec(Y)
W(α,H∗(α),D∗(α))

· vec(F(α,H∗(α),K∗
1 (α), . . . , K∗

N (α)))

+
∂

∂ vec(Z)
W(α,H∗(α),D∗(α))vec(G(α,H∗(α))) (27)

then (K∗
1 , . . . , K∗

N ) are optimal decision strategies in
K1

tf ,Hf ,Df ;µ × · · · × KN
tf ,Hf ,Df ;µ and

W(ε,Y,Z) = V(ε,Y,Z) , (28)

where V(ε,Y,Z) is the value function.
It is observed that to have the an optimal solution along
with the decision laws (K∗

1 , . . . , K∗
N ) ∈ K1

tf ,Hf ,Df ;µ×· · ·×
KN

tf ,Hf ,Df ;µ well defined and continuous for all α ∈ [t0, tf ],
the solution H(α) to the equation (22) when evaluated at
α = t0 must then exist. Therefore, it is necessary that H(α)
is finite for all α ∈ [t0, tf ). Moreover, the solution of the
equation (22) exists and is continuously differentiable in a
neighborhood of tf . Applying the results from [1], these
solutions can further be extended to the left of tf as long
as H(α) remains finite. Hence, the existences of unique and
continuously differentiable solutions to the equation (22) are
certain if H(α) are bounded for all α ∈ [t0, tf ). As the result,
the candidate value functions V(α,H,D) are continuously
differentiable as well. The following theorem is proven.

Theorem 9: Necessary and Sufficient Conditions.
(K∗

1 , . . . , K∗
N ) are optimal strategies if and only if H(α) is

bounded for all α ∈ [t0, tf ).

IV. STRATEGIES BY COOPERATIVE DECISION MAKERS

Recall that the optimization problem being considered
herein is in “Mayer form” and can be solved by applying
an adaptation of the Mayer form verification theorem of
dynamic programming given in [2]. In the framework of
dynamic programming, it is often required to denote the
terminal time and states of a family of optimization problems
as (ε,Y,Z) rather than (tf ,Hf ,Df ). That is, for ε ∈ [t0, tf ]
and 1 ≤ l ≤ k, the states of the system (22)-(23) defined
on the interval [t0, ε] have the terminal values denoted by
H(ε) ≡ Y and D(ε) ≡ Z . Since the performance index
(24) is quadratic affine in terms of arbitrarily fixed x0, this
observation suggests a solution to the HJB equation (25) may
be of the form as follows.

Theorem 10: Candidate Value-Function.
Fix k ∈ Z+ and let (ε,Y,Z) be any interior point of the
reachable set Q at which the real-valued function

W(ε,Y,Z) =

xT
0

k∑

l=1

µl(Yl + El(ε)) x0 +
k∑

l=1

µl(Zl + Tl(ε)) (29)

is differentiable. The parametric functions of time El ∈
C1([t0, tf ];Sn) and Tl ∈ C1([t0, tf ];R) are yet to be de-
termined. Furthermore, the time derivative of W(ε,Y,Z) is

d

dε
W(ε,Y,Z) =

k∑

l=1

µl

(
Gl(ε,Y) +

d

dε
Tl(ε)

)

+ xT
0

k∑

l=1

µl

(
Fl(ε,Y, K1, . . . , KN ) +

d

dε
El(ε)

)
x0. (30)

The substitution of this hypothesized solution (29) into the
HJB equation (25) and making use of the result (30) yields

0 = min
K1∈K1,...,KN∈KN

{
∂

∂ε
W(ε,Y,Z)

+
∂

∂ vec(Y)
W(ε,Y,Z) · vec(F(ε,Y, K1, . . . , KN ))

+
∂

∂ vec(Z)
W(ε,Y,Z) · vec(G(ε,Y))

}
,

= min
K1∈K1,...,KN∈KN

{
xT

0

(
k∑

l=1

µl
d

dε
El(ε)

)
x0

+
k∑

l=1

µl
d

dε
Tl(ε) +

k∑

l=1

µlGl(ε,Y)

+ xT
0

(
k∑

l=1

µlFl(ε,Y, K1, . . . , KN )

)
x0

}
. (31)

Differentiating the expression within the bracket of (31) with
respect to K1, . . . , KN yield the necessary conditions for an
extremum of the performance index (24) on [t0, ε],

−2BT
1 (ε)

k∑

l=1

µlYlM0 − 2µ1R1(ε)K1M0 = 0 ,

... =
...

−2BT
N (ε)

k∑

l=1

µlYlM0 − 2µ1RN (ε)KNM0 = 0 .

Because M0 is an arbitrary rank-one matrix, it must be true

K1(ε,Y,Z) = −R−1
1 (ε)BT

1 (ε)
k∑

r=1

µ̂rYr , (32)

... =
...

KN (ε,Y,Z) = −R−1
N (ε)BT

N (ε)
k∑

r=1

µ̂rYr , (33)

where µ̂r , µl/µ1 for µ1 > 0. Substituting the gain
expressions (32) and (33) into the right member of the HJB
equation (31) yields the value of the minimum

xT
0

[
k∑

l=1

µl
d

dε
El(ε)−AT (ε)

k∑

l=1

µlYl −
k∑

l=1

µlYlA(ε)

−µ1Q(ε)+
k∑

r=1

µ̂rYr

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

l=1

µlYl



+
k∑

l=1

µlYl

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sYs

− µ1

k∑
r=1

µ̂rYr

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sYs

−
k∑

l=2

µl

l−1∑
q=1

2l!
q!(l − q)!

YqG(ε)WGT (ε)Yl−q

]
x0

+
k∑

l=1

µl
d

dε
Tl(ε)−

k∑

l=1

µlTr
{YlG(ε)WGT (ε)

}
. (34)

It is now necessary to exhibit {Ep(·)}k
p=1 and {Tp(·)}k

p=1
which render the left side of (34) equal to zero for ε ∈
[t0, tf ], when {Yp}k

p=1 are evaluated along solution trajec-
tories. Studying the expression (34) reveals that Ep(·) and
Tp(·) for 1 ≤ p ≤ k satisfying the differential equations

d

dε
E1(ε) = AT (ε)H1(ε) +H1(ε)A(ε) + Q(ε)

−H1(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
H1(ε)

+
k∑

r=1

µ̂rHr(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sHs(ε) (35)

and, for 2 ≤ p ≤ k

d

dε
Ep(ε) = AT (ε)Hp(ε) +Hp(ε)A(ε)

−Hp(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
Hp(ε)

+
p−1∑
q=1

2p!
q!(p− q)!

Hq(ε)G(ε)WGT (ε)Hp−q(ε) , (36)

together with, for 1 ≤ p ≤ k

d

dε
Tp(ε) = Tr

{Hp(ε)G(ε)WGT (ε)
}

(37)

will work. Furthermore, at the boundary condition, it is
necessary to have W (t0,H0,D0) = φ0 (t0,H0,D0). Or,
equivalently

xT
0

k∑

l=1

µl(Hl0 + El(t0)) x0 +
k∑

l=1

µl(Dl0 + Tl(t0)) =

xT
0

k∑

l=1

µlHl0x0 +
k∑

l=1

µlDl0 .

Thus, matching the boundary condition yields the corre-
sponding initial value conditions Ep(t0) = 0 and Tp(t0) = 0
for the equations (35)-(37). Applying the feedback gain

specified in (32) and (33) along the solution trajectories of
the equations (22)-(23), these equations become

d

dε
H1(ε) = −AT (ε)H1(ε)−H1(ε)A(ε)−Q(ε)

+H1(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
H1(ε)

−
k∑

r=1

µ̂rHr(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sHs(ε) (38)

and, for 2 ≤ p ≤ k

d

dε
Hp(ε) = −AT (ε)Hp(ε)−Hp(ε)A(ε)

+Hp(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)

[
N∑

i=1

Bi(ε)R−1
i (ε)BT

i (ε)

]
Hp(ε)

−
p−1∑
q=1

2p!
q!(p− q)!

Hq(ε)G(ε)WGT (ε)Hp−q(ε) , (39)

together with, for 1 ≤ p ≤ k

d

dε
Dp(ε) = −Tr

{Hp(ε)G(ε)WGT (ε)
}

(40)

where the terminal conditions H1(tf ) = Qf , Hp(tf ) = 0
for 2 ≤ p ≤ k and Dp(tf ) = 0 for 1 ≤ p ≤ k. Thus, when-
ever these equations (38)-(40) admit solutions {Hp(·)}k

p=1

and {Dp(·)}k
p=1, then the existence of {Ep(·)}k

p=1 and
{Tp(·)}k

p=1 satisfying the equations (35)-(37) are assured.
By comparing equations (35)-(37) to those of (38)-(40), one
may recognize that these sets of equations are related to one
another by d

dεEp(ε) = − d
dεHp(ε) and d

dεTp(ε) = − d
dεDp(ε)

for 1 ≤ p ≤ k. Enforcing the initial value conditions
of Ep(t0) = 0 and Tp(t0) = 0 uniquely implies that
Ep(ε) = Hp(t0) − Hp(ε) and Tp(ε) = Dp(t0) − Dp(ε) for
all ε ∈ [t0, tf ] and yields a value function

W(ε,Y,Z) = V(ε,Y,Z)

= xT
0

k∑

l=1

µlHl(t0)x0 +
k∑

l=1

µlDl(t0) ,

for which the sufficient condition (27) of the verification
theorem is satisfied. Therefore, the optimal decision laws for
the decision maker 1, (32) and the decision maker N, (33)
minimizing the performance index stated in (24) become

K∗
1 (ε) = −R−1

1 (ε)BT
1 (ε)

k∑
r=1

µ̂rH∗r(ε) , (41)

... =
...

K∗
N (ε) = −R−1

N (ε)BT
N (ε)

k∑
r=1

µ̂rH∗r(ε) . (42)



Theorem 11: Multi-Cumulant Cooperative Strategies.
Consider the multi-person linear-quadratic differential sys-
tem (4)-(5) whose pairs (A, Bi), . . . , (A,BN ) are uniformly
stabilizable on [t0, tf ]. Let k ∈ Z+ and the sequence µ =
{µi ≥ 0}k

i=1 with µ1 > 0. Then the optimal decision laws
are achieved by the cooperative feedback control gains

K∗
1 (α) = −R−1

1 (α)BT
1 (α)

k∑
r=1

µ̂rH∗r(α) , (43)

... =
...

K∗
N (α) = −R−1

N (α)BT
N (α)

k∑
r=1

µ̂rH∗r(α) , (44)

where µ̂r , µl/µ1 mutually chosen by cooperative decision
makers represent different levels of influence as they deem
important to the overall cost distribution and {H∗r(α) ≥
0}k

r=1 are the optimal solutions of the backward-in-time
coupled Riccati-type differential equations

d

dα
H∗1(α) = −

[
A(α) +

N∑

i=1

Bi(α)K∗
i (α)

]T

H∗1(α)

−H∗1(α)

[
A(α) +

N∑

i=1

Bi(α)K∗
i (α)

]

−Q(α)−
N∑

i=1

K∗T
i (α)Ri(α)K∗

i (α) , (45)

and, for 2 ≤ r ≤ k

d

dα
H∗r(α) = −

[
A(α) +

N∑

i=1

Bi(α)K∗
i (α)

]T

H∗r(α) (46)

−H∗r(α)

[
A(α) +

N∑

i=1

Bi(α)K∗
i (α)

]

−
r−1∑
s=1

2r!
s!(r−s)!

H∗s(α)G(α)WGT(α)H∗r−s(α)

with the terminal boundary conditions H∗1(tf ) = Qf , and
H∗r(tf ) = 0 when 2 ≤ r ≤ k.
In a situation where cooperative decision makers not only
minimize the overall performance index of a total system but
also, at the same time ensure that the closed-loop poles lie to
the left of a line Re(jω) = −σ, for a prescribed σ ∈ R+. The
advantages offered by this additional consideration include
system robustness against variations of system parameters
as well as tolerances of time delay and nonlinearities in the
closed loop.

In place of the original cost (1), the new cost with a
prescribed degree of stability σ > 0 is given by

J(t0, x0; u1, . . . , uN ) = xT (tf )Qfe2σtf x(tf ) (47)

+
∫ tf

t0

[
xT(τ)Q(τ)x(τ) +

N∑

i=1

uT
i (τ)Ri(τ)ui(τ)

]
e2στdτ .

Intuitively, the new control optimization can be converted
to the original optimization problem with some changes of

variables: xσ(t) , x(t)eσt, uσ(t) , u(t)eσt, and wσ(t) ,
w(t)eσt. The strategy solutions are summarized as follows.

Theorem 12: Strategies with a Prescribed Stability.
Consider the multi-person linear-quadratic differential sys-
tem (4)-(5) whose pairs (A,Bi) are uniformly stabilizable on
[t0, tf ]. Let k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with
µ1 > 0. Then the optimal decision laws with a prescribed
degree of stability, σ > 0 are achieved by cooperative gains

K∗
σ,1(α) = −R−1

1 (α)BT
1 (α)

k∑
r=1

µ̂rH∗σ,r(α) , (48)

... =
...

K∗
σ,N (α) = −R−1

N (α)BT
N (α)

k∑
r=1

µ̂rH∗σ,r(α) , (49)

where µ̂r , µl/µ1 represent different levels of influence
as they deem important to the overall cost distribution and
{H∗σ,r(α) ≥ 0}k

r=1 are the optimal solutions of the equations

d

dα
H∗σ,1(α) = −

[
A(α) + σI +

N∑

i=1

Bi(α)K∗
σ,i(α)

]T

H∗σ,1(α)

−H∗σ,1(α)

[
A(α) + σI +

N∑

i=1

Bi(α)K∗
σ,i(α)

]

−Q(α)−
N∑

i=1

K∗T
σ,i (α)Ri(α)K∗

σ,i(α) , (50)

and, for 2 ≤ r ≤ k

d

dα
H∗σ,r(α) = −

[
A(α) + σI +

N∑

i=1

Bi(α)K∗
σ,i(α)

]T

H∗σ,r(α)

−H∗σ,r(α)

[
A(α) + σI +

N∑

i=1

Bi(α)K∗
σ,i(α)

]

−
r−1∑
s=1

2r!
s!(r−s)!

H∗σ,s(α)G(α)WσGT(α)H∗σ,r−s(α) (51)

with the terminal boundary conditions H∗σ,1(tf ) = Qf , and
H∗σ,r(tf ) = 0 when 2 ≤ r ≤ k.

V. CONCLUSIONS

The recent results offer nontrivial educational and peda-
gogical contributions as well as performance analysis tools
toward the establishment of new, statistically based design
procedures for cooperative decision problems and stochastic
games. Their practicality may be found in network-enabled
collaborative systems, multi-layered sensing, and single in-
tegrated situational awareness applications.
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